Received: September 9, 1982; accepted: January 24, 1983

THERMOLYTIC REACTIONS OF POLYFLUOROORGANIC COMPOUNDS. PART XXVII+. INTERACTION OF 1.1- DICHLOROPOLYFLUOROINDANES WITH HALOFORMS

V.M. **KARPOV, V.E. PLATONOV, I.P. CHUIKOV and G.G. YAKOBSON Institute of Organic Chemistry, Novosibirsk, 630090 (USSR)**

SUMMARY

A number of pofyfIuoro-1-methyleneindanes have been obtained by copyrolysis of 1,1-dichloropolyfluoroindanes with CF_2^- CF₂, CHClF₂, CHCl₂F and CHCl₃. A possibility is shown for the reaction of 1,1-dichloroctafluoroindan with CHClF₂ to proceed by way of difluorocarbene insertion into the C-Cl bond of the benzylic position of this **indan, with subsequent dechlorination of the insertion product.**

INTRODUCTION

Copyrolysis of **pentafluorobenzotrichloride and its derivatives with haloforms and tetrahaloethylenes as sources of dihalocarbenes** is known to give polyfluorinated styrenes and indanes $\lceil 2 \rceil$, in the **case of haloforms the yield of styrenes Increases and the yield** of indanes decreases, compared with that for tetrahaloethylenes [2]. **ContlnuIng the investigation of high-temperature reactions** of **polyfluoroaromaffc compounds containing chlorine atoms in the benzylic position, we now report the interaction of l,l-dichloropolyfluocoinda***nes with sources* **of dihaiocarbenes. This extends the range of compounds involved in such tinsfortnatlons, and explores the possibility of synthesising in such a manner otherwise unavailable polyfluorinated methyleneindanes or their isomers - methylindenes. The abwe compounds are of interest, for instance, for studying the** effect of fluorine atoms on the properties of aromatic and antiaromatic **systems** $\begin{bmatrix} 3 \end{bmatrix}$.

^{*}For communication XXVI ct. (11.

RESULTS AND DISCUSSION

We have shown. that in copyrolysis of 1,1-dichloroctafluoroindan (I) with difluorochloromethane as a source of difluorocarbene [41 the main reaction product is perfluoro-l-methyleneindan (II). Other reaction products were perfluoro-2- (III) and -3-methylindenes (IV), as well as octafluoroindene (V).

Methyleneindan (II) ws also the main product of the reaction of indan (I) with another source of dlfluorocarbene, namely, tetrafluoroethylene. In this case methylindene (IV) was also formed.

The IR and 19 F NMR spectra of indenes (III) and (V) were identical with the spectra of authentic samples [5]. The structures of compounds (II) and (IV) were **confirmed by the elemental analysis data, spectral characteristics and chemical transformations. Thus, compound (II) under the action of caesium fluoride has been converted to**

460

⁺ **The yield of compounds (according to GLC analysis and** 19_F NMR spectre of fractions obtained by distillation of the reaction **mixture) as calculated for compound (I) taken for the reaction.**

methylindene (IV). In the absence of CsF this reaction does not take **place. Methylindene (N), in its turn,** vas **obtained in a reverse** reaction from the known 1-dichloromethyleneoctafluoroindan (VI) [6] **and caesium fluoride.**

Under the conditions of the reaction between compound (I) and CHClF2, methyleneindan (II) is partially isomerized to methylindene (TV). It has been shown, that the latter, together with methylindene (III) isomeric to it, in addition, appears to be the product of interaction of indene (V) with CHC1F₂.

The formation of indene (V), probably, proceeds through isomerization of carbene (VII) generated from indan (I). Indeed, indan (I) under the reaction conditions, in the absence of a :CF₂ source, undergoes **partial transformation into indene (V) and its derivative - 1,2-dichlor octafluoroindan (VIII). With a temperature rise to 680°, the yield of compound (V) is increased. The supposition put forward is not in contradiction to the data obtained by us on the thermal transformation of 1- hydro- 1-chloroctafluoroindan (IX) into indene (V). In the dehydrochlorinatlon of compound (IX), evidently, carbene (VII) is** generated, similarly to the case with haloforms $\lceil 4, 7, 8 \rceil$ and α -fluoro**benzyichloride [9]. Carbene (VII), in its turn, evidently, isomerizes into indene (V). Isomerization of fluorine-containing carbenes Into olefins is described in the literature [lo].**

In conformity with our previous investigations on copyrolysis of pentafluorobenzotrichloride and its derlvatlves with haloforms and tetrahaloethylenes ^[2], as well as on the thermolysis of polyfluorophenyicyclopropanes $\lceil 11 \rceil$, the formation of methyleneindan (II) in the reaction of indan (I) with CHClF₂ can be supposed as most likely to **proceed by way** of **difluorocarbene insertion into the C-Cl bond of indan (I) with subsequent dechlorination** of the **insertion product (route 1) or/and as a result of recombination of carbene (VII) with dlfluorocarbene (route 2).**

The formation of indene (V) in the pyrolysis of compound (I) under **argon**, as well as in its copyrolysis with CHClF₂ is not in **contradiction with route 2** of the **reaction. In addition , in the lnter**action of indan (IX) with CHClF₂, as in the reaction of compound (I) with CHCIF₂, the main product is methyleneindan (II).

In this case, however, one cannot exclude the possibility of compound (II) being formed by way of dlfluorocarbene insertion into the C-Cl bond of indan (IX) with subsequent dehydrochlorination of the **insertion product (cf. [12]).**

Should route 1 of the **reaction be realized, with lowering of the temperature one could expect the presence in the reaction mixture of the product of dlfluorocarbene** *insertion into the C-Cl* **bond of the initial compound. As** *a matter of fact, in the* **interaction of indan (I)** with CHC1F₂ at 570[°], 1-chloro-1-difluorochloromethyloctafluoroindan **(X) is formed. Indan (X) obtained from compound (II) by heating with** PC1₅, in its turn, under the conditions of indan (I) reacting with **CHClF2, gives methyleneindan (II) in a high yield.**

In accordance with the fact that copyrolysis of indan (I) with CHClF2 gives methyienelndan (II), it appeared reasonable to **extend this reaction, on the one hand, to other l,l-dichIoropolyfIuoroindanes and, on the other hand, to other haloforms, so as to determine whether it was possible to synthesize other polyfluoro-l-methylene-**

indanes in such a manner. We have shown, that in copyrolysis of 1,1,3-trichloroheptafluoroindan (XI) with CHClF₂ at 575^o the main **product is 3- chloroperfluoro- l- methyleneindan (XII).**

With the tempemture *rising to* **640° the yield of methyleneindan (XII) drops. Copyrolysis of 1,1,3,3-tetrachlorohexafluoroindan with CHClF2 leads to a very complicated mixture of products.**

Formation of **polyfluoro- l-methyleneindanes takes place also in the interaction of indan (I) with other haloforms. But the yield of the** corresponding methyleneindanes is lower than in the case of CHClF₂. In copyrolysis of indan (I) with CHCl₂F as a source of fluorochloro**carbene [7). isomeric l-fluorochloromethyleneoctafluoroindanes (XIII)** and (XN) are formed in a ratio $\sim 2:1$ alongside of 1-chlorohepta**fluoronaphthalene (XV) and a small quantity of octafluoronaphthalene (XVI).**

Compounds (XV) and (XVI) at least partially *can* **be products of** interaction of indene (V), which is formed from indan (I), with CHC1₂F. Indeed, in copyrolysis of indene (V) with $CHCI₂F$ the main product **is naphthalene (XVI) alongside of naphthalene (XV).**

In the interaction of lndan (1) with chloroform as a source of dichlorocarbene [8] at $\sim 600^{\circ}$ 1-dichloromethyleneoctafluoroindan **(VI) is formed.**

When the temperature is lowered to 525[°], there takes place not only **the formation** *of* **methyleneindan (VI), but also reduced elimination of one chlorine atom in the initial compound, leading to indan (IX), 1-CNoro- l-tricNoromethyioctafluorolndan (XVII), the product** of **dichIorocarbene insertion into the C- Cl bond of compound (I), has not** been detected (¹⁹F NMR spectrum of the mixture). Authentic indan (XVII) has been synthesized from compound (VI) and PC1₅.

The ratio of methyleneindanes (XIII) and (XIV) in the *reaction* **of** compound (I) with CHCI₂F has been determined from the ¹⁹F NMR **spectrum of their mixture. A distinctive feature of the spectra of these compounds is a large coupling constant of the fIuorine atom** of **the fluorochIoromethyIene group, which is in the cis -position to the aromatic ring, with the fluorine atom in position 7 (see Table 2). In Tables 1 and 2 chemical shifts of the signals and coupling constants in the 19 F NMR spectra of the methyleneindanes described in thls paper are presented. Signals were assigned by comparing the spectra of these compounds in the same manner as it was done for** polyfluorochlorindanes [2c]. In the assignment of the signals of vinyl **fluorine atoms, it was assumed that the value of the coupling constant** of **fluorine nuclei was materially dependent on the spatial proximity of the interacting nuclei [13]. It should be noted** , that **in the methyleneindanes described, the signal of the atom F 5 which is in** para-position to the double bond is less shifted down-field than the signal of F^6 . A similar situation is observed in the ¹⁹F NMR spectrum of octafluoroindene (V) [14].

Chemical shifts (ppm down-field from C6F6 as an internal standard) **of signals in** Chemical shifts (ppm down-field from C_6F_6 as an internal standard) of signals in 19 F NMR spectra of polyfluoromethyleneindanes **F NMR spectra of polyfluoromethyleneindanes**

TABLE 2

ModuIi of the coupling constants (Hz) for polyfluoromethyleneindanes

***** $J_{2\alpha2\beta}$ = 234 Hz

+* **Approximate values, since signals 4, 5 and 6 of compounds (XIII) and (XIV) are pairwise mutually superimposed.**

Elemental analysis data, IR and UV spectra of compounds **Elemental analysis data, IR and W spectra of compounds**

TABLE 3

TABLE 3

***Elemental composition of compounds (II)and (N) is determined by means of** * Elemental composition of compounds (II) and (IV) is determined by means of **high-resolution mass spectrometry.** high-resolution mass spectrometry.

Pyrolysis of compounds (I), (II), (IX), (X) and th eir copyrolysis with CHCIF Pyrolysis of compounds (1) , (II) , (IX) , (X) and their copyrolysis with CHCIF₂

* According to GLC and 19 F NMR spectroscopy data. ***According to GLC and "F NMR spectroscopy data.**

** Authentic product (VIII) is prepared by known method $[16]$. ****Authentic product (VIII) is prepared by** known **method [16].**

*** content of each of other products does not exceed 3%, *****Content of each of other products does not exceed 396.**

EXPERIMENTAL

19 F NMR spectra were recorded on a Varian A-56160A at 56.4 MHz for solutions in Ccl4 (11 mol.%). Chemical shifts are quoted in δ ppm down-field from C₆F₆ as an internal standard. **IR spectra were recorded on a UR-20 spectrometer for solutions in CC14. W spectra were recorded on a Specord W-VIS** *for* solutions in heptane, 10⁻⁴-10⁻³ mol/l. Mass spectra were recorded **on an AEI-MS 902. Elemental analysis data, IR and** *W* **spectra of navel compounds** are **presented in Table 3.**

Interaction of 1,1-dichloroctafluoroindan (I) with CHCIF₂

311 g of indan (I) were passed through a quartz tube $(400 \times 20 \text{ mm})$ at 630-640[°] in a stream of CHCIF₂ (15 l/h) for 16.5 h. Distillation with steam gave 300 g of a mixture (dried over MgSO₄) which, according to GLC data, contained $\sim 65-68\%$ of methyleneindan **(II). The mixture was subjected to vacuum distillation in a stream of argon on a rectification column; as a result, 156 g of pertluoro-lmethyleneindan (II) (nc) were isolated, b.p. 109.8-110°/75** mm **Hg,** containing no admixtures (¹⁹F NMR spectrum). In addition, fractions **were obtained, enriched with compounds (II) - (V) ("F NMR spectra, GLC).**

The reaction carried out with smaller **quantities of compound (I) gave a mixture** of the **same composition, but in a smaller yield (see Table 4). The** results **of pyrolysis of some other compounds are also presented in Table 4.**

$\frac{1}{2}$ **Reaction of indan (I) with** CF_2 **= CF** 2

By following a similar procedure, from 5 g of indan (I) and CF_2 ^{*n*}CF₂ (15 l/h) at 630-640[°] (15 minutes) 4.75 g of a mixture were obtained, which, according to the GLC and ¹⁹F NMR data. **contained 47%** of **methyieneindan (II) and 15% of indene (IV).**

3-Chloroperfiuoro-l-methyleneindan (XII) (nc)

By following a procedure simIIar to that described above, from 10.1 g of indan (XI) and CHCIF₂ at 575^o (30 minutes) 7 g of **a mixture** were **obtained, which, according to GLC data, contained 33% of methyleneindan (XII). The latter was isolated by preparative** GLC $(175^{\circ}, \text{SKFFT}-50 \text{ on chromaton } W, N_2)$.

Copyrolysis of indan (I) with CHCl_aF

In a similar manner, from 2g of indan (I) and CHC1₂F (15 l/h) **at 620° (6 minutes**) **4 g of a mixture** were **obtained. A part of** low-boiling products with b.p. to 110[°] was distilled off from the **mixture. The residue (1.6 g) contained according to GLC data, 30% of methyleneindanes (XIII) and (XIV), 10% of (XV), 3%** of **(XVI), 10%** of the **initial compound. Naphthalene (XV) and the** mixture **of methyleneindanes (XIII) (nc**) **and (XIV) (nc**) were **isolated by preparative GLC** (200[°], SKTFV-803 on celite, N_2). The ¹⁹F NMR **spectrum** of the **obtained naphthalene (XV) and its m.p. coincide with** those of the authentic sample [15].

Interaction of indan (I) with CHCl₃

(a) At 620°

A solution of $1 g$ of indan (I) in $4.2 g$ of CHCl₃ was passed **through a quartz tube (400x 20** mm) at **620° for 4 minutes. Distillation with steam and drying wer MgS04 gave 1.5 g** of **a** mixture **which, according to GLC data,** contained **4% of methyleneindan (VI), 16%** of initial (I), 11% of CCl₄, 62% of C₂Cl₄. In the ¹⁹F NMR spectrum of **the mixture signals of authentic compounds (I) and (VI) were observed,**

(b) At 525O

In a similar manner from 1 g of indan (I) and 4.2 g of CHCl₃ at **525O 2.87 g of a mixture were obtained. The fraction wlth b. p. to 130° wss distilled off.** The **residue (1.08 g) contained, according to GLC data, 4%** of **methyleneindan (VI), 17% of indan (IX), 41% of the** initial compound (I) . In the 19 F NMR spectrum of the residue signals **of the authentic compound (IX) [16]** were **observed.**

Copyrolysis of octafluoroindene (V) with CHCl₂F and CHClF₂

The process was carried out in the same manner as the **copyrolysis of indan (I) wlth these haloforms. From 1 g of indene (V)** and CHC1₂F at 620° , after distilling-off the products with b.p. to **120°, 1.15 g of a mixture were obtained, containing, according to the GLC** and **"F NMR data, 30% of naphthalene (XVI) and 7%** of **naphthalene (XV).**

From 1 g of indene (V) and CHClF₂ at 640[°] a complex mixture **of products was obtained (0.44 g), containing, according to GLC data, 11%** of **indene (III), 6% of indene (IV) and 8% of the initial compound.** In the ¹⁹F NMR spectrum of the mixture signals of the above**mentioned compounds were observed.**

Perfiuoro- 3 - methylindene (IV) (nc)

(a) A mixture of 1 g of compound (VI) with 3.54 g of CSF was heated in a sealed ampoule at 235[°] for 2.5 h and then at 260[°] for 3 h. Distillation with steam gave 0.73 g of methylindene (IV).

(b) In a similar manner indene (IV) was obtalned from 0.16 g of compound (II) and 0.02 g of CsF at 235^o. In the absence of CsF the **reaction does not take place.**

⁻ F NMR spec**tr**um of methylindene (IV): 99.0 (CF₃, J_E2 _{CF} \sim $\sim J_m 4$ _c **24.1 (2F)13** \sim 20 Hz), 40.0 (1F⁻), 37.7 (2F⁻, J_{F1-F}2 \sim 14 Hz), **16.6 (lF), 10.8 (1F).**

Interaction of methyleneindan (II) with PC₁

6 g of compound (II) were heated in a sealed ampoule with 12.8~ of PCI_E at 225[°] for 6.5 h. The contents were transferred into water, the organic layer (7.2 g) was dried over MgSO₄ and distilled in **vacuum. 5.6 g of compound (X) (nc) were obtained, b.p. 75-77O** (5 mm Hg) . ¹⁹F NMR spectrum: 106.4 (CF₂Cl), 56.9 (2F³). 52.5 $(1F_A^2)$, 39.6 $(1F_B^2)$, 31.2 $(1F)$, 23.6 $(1F)$, 19.3 $(1F)$, **17.4** (1F); J_{FR}^{AB} = 237 Hz (cf. [2c]).

l- Chloro- l- trichloromethyIoctafIuoroindan (XVII) (nc)

By following a **procedure similar to the above, from 1 g of** compound (VI) and 1.9 g of PC1_5 after sublimation $(120^\circ, 4 \text{ mm Hg})$ 0.86 g of compound (XVII) (viscous liquid) was obtained. ¹⁹ F NMR spectrum: 58.9 $(2F^3)$, 59.5 $(1F_A^2)$, 44.2 $(1F_B^2)$, 38.0 $(1F)$, 23.1 $(1F)$, 19.3 $(1F)$, 17.0 $(1F)$; $J_{\text{PR}}^{\text{AB}}$ = 230 Hz.

- A.M. Maksimov, V.E. Platonov, G.G. Yakobson, O.M. Yakhlakova, 1. **R.A. Bekker, B.L. Dyatkin, I.L. Knunyants, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, (1981) (6) 128.**
- **(a) K.V. Dvolllikova, V. E. Platonov, G.G. Yakobson, Iw. Akad.** $\overline{2}$ **Nauk SSSR, Ser. Khim., (1978) 1216. (b) K.V. Pvornikova, v. E. Platonov, G.G. Yakobson, Zh. Org.** Khim., 11 (1975) 2383. (c) V. M. Karpov, L.S. Klimenko, V. E. Platonov, G. G. Yakobson, Zh. Org. Khim., 11 (1975) 2372.
- 3 V. M. Karpov, V. E. Platonov, G. G. Yakobson, Tetrahedron, 34 **(1978) 3215.**
- **Yu.A. Panshin, Zh. Fiz. Khim.. &3 (1966) 2226.** 4
- V. M. Karpov, V. E. Platonov, G. G. Yakobson, Zh. Org. Khim., 5 **10 (1974) 663. v. M. ~arpw,** v. **E. PIatonw, G.G. Yakobson, Isv. Akad. Nauk SSSR, Ser. KhIm., (1976) 2295.**
- **v. M.** *tarps, v.* **E. PIatonov,** T.A. **Stolyarova,** G.G. Yakobson, 6 1~. Akad. **Nauk SSSR, Ser. Khim., (1981) 1586.**
- 1.D. Kushina, A.L. Bel'ferman, V.U. Shevchuk, Kinetika i Kataliz, \overline{z} 13 **(1972) 843.**
- **A. E. Shflov, R.D. Sabirwa, Zh. Fis. Khim., 34 (1968) 866.** 8
- **H. Shingu, M. Hisazumi, US Patent No. 3,489,867:** \mathbf{Q} **c Chem. Abstr.. 72 (1970) 89745d].**
- **19 R, Fields, R.N. Haszeldine, J. Chem. Sot., (1964) 1881.**
- **11 K.V. Dvornikova, V. E. Platonov, G.G. Yakobson, J. Fluorine Chem., 11 (1978) 1.**
- 12 K.V. Dvornikova, T.I. Savchenko, I.V. Kolesnikova, T.D. Petrova, **v.E. Platonov, Iw. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, (1981) (4) 103.**
- **13 S. Ng, C.H. Sederholm. J. Chem. Phys., 40 (1964) 2999.**
- **14 R. S. Matthews, W. E. Preston, Org. Magn. Res., 14 (1980) 258.**
- **16 L. S. Klimenko, V. M. Karpov, V. E. Platonov. G.G. Yakobson, Zh. Org. Khim., 15 (1979) 146.**
- 16 V.M. Karpov, V.E. Platonov, I.P. Chuikov, G. G. Yakobson, **Zh. Org. Khim., in press.**